Efficient Hill Climber for Multi-Objective Pseudo-Boolean Optimization

نویسندگان

  • Francisco Chicano
  • L. Darrell Whitley
  • Renato Tinós
چکیده

Local search algorithms and iterated local search algorithms are a basic technique. Local search can be a stand along search methods, but it can also be hybridized with evolutionary algorithms. Recently, it has been shown that it is possible to identify improving moves in Hamming neighborhoods for k-bounded pseudo-Boolean optimization problems in constant time. This means that local search does not need to enumerate neighborhoods to find improving moves. It also means that evolutionary algorithms do not need to use random mutation as a operator, except perhaps as a way to escape local optima. In this paper, we show how improving moves can be identified in constant time for multiobjective problems that are expressed as k-bounded pseudo-Boolean functions. In particular, multiobjective forms of NK Landscapes and Mk Landscapes are considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reducing Local Optima in Single-Objective Problems by Multi-objectivization

One common characterization of how simple hill climbing optimization methods can fail is that they become trapped in local op tima a state where no small modi cation of the current best solution will produce a solution that is better This measure of better depends on the performance of the solution with respect to the single objective be ing optimized In contrast multi objective optimization MO...

متن کامل

Solving Multi-objective Pseudo-Boolean Problems

Integer Linear Programs are widely used in areas such as routing problems, scheduling analysis and optimization, logic synthesis, and partitioning problems. As many of these problems have a Boolean nature, i.e., the variables are restricted to 0 and 1, so called Pseudo-Boolean solvers have been proposed. They are mostly based on SAT solvers which took continuous improvements over the past years...

متن کامل

Stochastic Algorithms for Optimization and Application to Job-Shop-Scheduling

Combinatorial optimization problems are often used to test heuris-tics. Among heuristics, stochastic ones deserve particular consideration being generally meta-heuristics that aim at performing reasonnably well on a wide spectrum of problems. Among them, evolutionary algorithms have recently appeared. Emphasis have been put on them by researches that have shown that they are able to solve eecie...

متن کامل

When a genetic algorithm outperforms hill-climbing

A toy optimisation problem is introduced which consists of a ÿtness gradient broken up by a series of hurdles. The performance of a hill-climber and a stochastic hill-climber are computed. These are compared with the empirically observed performance of a genetic algorithm (GA) with and without. The hill-climber with a suuciently large neighbourhood outperforms the stochastic hill-climber, but i...

متن کامل

Boolean Lexicographic Optimization

Multi-Objective Combinatorial Optimization (MOCO) problems find a wide range of practical application problems, some of which involving Boolean variables and constraints. This paper develops and evaluates algorithms for solving MOCO problems, defined on Boolean domains, and where the optimality criterion is lexicographic. The proposed algorithms build on existing algorithms for either Maximum S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016